Exportar este item: EndNote BibTex

Use este identificador para citar ou linkar para este item: https://bdtd.unifal-mg.edu.br:8443/handle/tede/834
Tipo do documento: Dissertação
Título: Análise de Arquétipos: introdução a teoria e aplicações
Autor: MARTINS JÚNIOR, José Márcio 
Primeiro orientador: FERREIRA, Eric Batista
Primeiro coorientador: NOGUEIRA, Denismar Alves
Segundo coorientador: FERREIRA, Daniel Furtado
Primeiro membro da banca: BUENO FILHO, Júlio Silvio de Sousa
Segundo membro da banca: DIAS, Adriana
Terceiro membro da banca: BEIJO, Luiz Alberto
Resumo: Existem diversas técnicas que auxiliam na interpretação e análise de dados multivariados. Uma das técnicas mais difundidas e utilizadas é a Análise de Componentes Principais, que tem como principal objetivo reduzir a dimensionalidade dos dados afim de facilitar a interpretação. A Análise de Arquétipos também é uma técnica multivariada que busca reduzir a dimensionalidade dos dados, mas por meio de combinações convexas dos próprios dados. Os arquétipos são selecionados pela minimização da soma de quadrados de resíduos que representa o erro cometido ao se reconstruir os dados originais utilizando os arquétipos. Este trabalho teve como objetivo geral explorar em mais detalhes a Análise de Arquétipos e traçar a sua história, além de verificar potencialidades de aplicações existentes e futuras em diversas áreas do conhecimento. De forma mais específica objetivou-se: descrever em detalhes a Análise de Arquétipos, identificar similaridades e diferenças entre a Análise de Arquétipos e a Análise de Componentes Principais, realizar estudos de simulação para avaliar qual a melhor métrica para medir a falta de ajuste dos dados recompostos pelos arquétipos, aplicar a técnica Análise de Arquétipos em dados sobre a movimentação de jogadores de futebol, realizar simulações Monte Carlo para avaliar se há algum ganho em executar a Análise de Arquétipos em conjunto com a Análise de Componentes Principais, e aplicar esta em dados sensométricos experimentais sobre hambúrgueres. As metodologias utilizadas foram uma extensa revisão bibliográfica e simulações Monte Carlo. Os resultados mostraram que a Análise de Arquétipos é uma técnica com ampla aplicabilidade e excelentes resultados práticos. O estudo das métricas concluiu que a soma de quadrados de resíduos deve ser utilizada por ser a mais simples, e que não há qualquer prejuízo em utilizar esta métrica em relação as outras estudadas. No contexto do futebol a Análise de Arquétipos foi capaz de verificar se o jogador ou grupo de jogadores atuam em seu espaço designado, se a apostura foi ofensiva ou defensiva entre outras, sendo uma nova abordagem para ser utilizada em conjunto com outras técnicas para este fim. No estudo de simulação que visava aplicar as duas técnicas, foi evidenciado a capacidade de reconstrução das técnicas em conjunto e a melhora na interpretabilidade que as técnicas apresentam quando utilizadas conjuntamente.
Abstract: There are several techniques that aid in the interpretation and analysis of multivariate data. One of the most widespread techniques used and is the Principal Component Analysis, which aims to reduce the dimensionality of the data in order to facilitate interpretation. The Archetypal Analysis is also a multivariate technique that seeks to reduce the dimensionality of the data, but through convex combinations of the data itself. Archetypes are selected by minimizing the residual sum of squares that is the mistake to reconstruct the original data using the archetypes. This work aimed to explore in more detail the Archetypal Analysis and trace its history, and to identify capabilities of existing and future applications in various areas of knowledge. More specifically it aimed to: describe in detail the Archetypal analysis, identify similarities and differences between the Archetypal Analysis and Principal Component Analysis, conduct simulation studies to assess how best metric for measuring the lack of fit of the data recomposed by archetypes, apply the Archetypal Analysis on data of the movement of soccer players, perform Monte Carlo simulations to assess whether there is some gain in performing Archetypal Analysis in conjunction with the Principal Component Analysis, and apply this to experimental sensory data of burgers. The methodologies used were an extensive literature review and Monte Carlo simulations. The results showed that the Archetypal Analysis is a technique with wide applicability and excellent practical results. The study of metrics concluded that the residual sum of squares should be used because it is the simplest, and that there is no harm in using this metric compared to the others tha was studied. In the context of the soccer, Archetypal Analysis was able to verify that the player or group of players are in their designated space, the offensive or defensive behavior among others, being a new approach to be used in conjunction with other techniques for this purpose. About the study of simulation designed to implement both techniques, was evidenced a improvement of reconstruction capacity and in the interpretability.
Palavras-chave: Análise Multivariada
Análise Sensorial
Metodo de Monte Carlo
Área(s) do CNPq: ESTATISTICA::ANALISE MULTIVARIADA
Idioma: por
País: Brasil
Instituição: Universidade Federal de Alfenas
Sigla da instituição: UNIFAL-MG
Departamento: Instituto de Ciências Exatas
Programa: Programa de Pós-Graduação em Estatística Aplicada e Biometria
Citação: MARTINS JÚNIOR, José Márcio. Análise de Arquétipos: introdução a teoria e aplicações. 2015. 61 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2015
Tipo de acesso: Acesso Aberto
Endereço da licença: http://creativecommons.org/licenses/by-nc-nd/4.0/
URI: https://bdtd.unifal-mg.edu.br:8443/handle/tede/834
Data de defesa: 10-Abr-2015
Aparece nas coleções:Mestrado

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertacão de José Márcio Martins Júnior.pdf3,2 MBAdobe PDFBaixar/Abrir Pré-Visualizar


Este item está licenciada sob uma Licença Creative Commons Creative Commons